BL20 – Redundant power supply

BL20-BR-24VDC-RED
All brand and product names are trademarks or registered trade marks of the owner concerned.

Edition 09/2013
© Hans Turck GmbH, Muelheim an der Ruhr

All rights reserved, including those of the translation.
No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without written permission of Hans Turck GmbH & Co. KG, Muelheim an der Ruhr.

Subject to alterations without notice
Table of contents

1 **About this manual**

1.1 **General** .. 1-2

1.1.1 Additional documentation ... 1-2

1.2 **Description of symbols used** .. 1-3

1.3 **Overview** .. 1-4

1.3.1 Prescribed use .. 1-4

1.3.2 Notes concerning planning/installation of this product .. 1-4

2 **BL20-BR-24VDC-RED - technical description**

2.1 **General function description** .. 2-2

2.1.1 Usage of BL20-BR-24VDC-RED .. 2-2

2.2 **Block diagram (single BL20-BR-24VDC-RED)** .. 2-2

2.3 **Technical data** ... 2-3

2.4 **Wiring diagram** ... 2-4

2.5 **LED description/ status display** .. 2-5

2.6 **Parameter data** ... 2-5

2.7 **Diagnostic data of the module** ... 2-5

2.8 **Process data of the module** .. 2-6

2.8.1 Process output/control interface .. 2-6

2.8.2 Process input data ... 2-6

3 **BL20-BR-24VDC-RED - installation**

3.1 **Redundant power supply of a BL20-station** .. 3-2

3.1.1 Applicable gateways .. 3-2

3.1.2 Redundant power feed directly next to the gateway ... 3-3

3.1.3 Redundant power supply of different potential groups .. 3-5

3.1.4 Digital output modules in redundantly supplied stations ... 3-6

4 **Configuring of redundantly supplied stations with the I/O-ASSISTANT Quick Start**

4.1 **Starting the TURCK I/O-ASSISTANT Quick Start** ... 4-2

4.2 **Configuring the BL20-station in the Quick Start** .. 4-3
1 About this manual

1.1 General
1.1.1 Additional documentation

1.2 Description of symbols used

1.3 Overview
1.3.1 Prescribed use
1.3.2 Notes concerning planning/installation of this product
1.1 General

This manual describes the BL20 Bus Refreshing module for redundant power supply BL20-BR-24VDC-RED.

It contains the description of the technical features and functions as well as special installation guidelines.

The BL20-BR-R24VDC-RED can currently only be used with some gateways, specified within chapter 3, BL20-BR-24VDC-RED - installation (page 3-1).

1.1.1 Additional documentation

- D300717 "BL20 I/O modules - Hardware and Engineering"
- D300956 "BL20/BL67 – USER MANUAL FOR PROFIBUS-DPV1"
- D301004 "BL20 – Gateway for Modbus TCP"
Description of symbols used

Danger
This sign can be found next to all notes that indicate a source of hazards. This can refer to danger to personnel or damage to the system (hardware and software) and to the facility. This sign means for the operator: work with extreme caution.

Attention
This sign can be found next to all notes that indicate a potential source of hazards. This can refer to possible danger to personnel and damages to the system (hardware and software) and to the facility.

Note
This sign can be found next to all general notes that supply important information about one or more operating steps. These specific notes are intended to make operation easier and avoid unnecessary work due to incorrect operation.
1.3 Overview

Attention
Please read this section carefully. Safety aspects cannot be left to chance when dealing with electrical equipment.

This manual includes all information necessary for the prescribed use of TURCK devices. It has been specially conceived for personnel with the necessary qualifications.

1.3.1 Prescribed use

Appropriate transport, storage, deployment and mounting as well as careful operating and thorough maintenance guarantee the trouble-free and safe operation of these devices.

Danger
The devices described in this manual must be used only in applications prescribed in this manual or in the respective technical descriptions, and only with certified components and devices from third party manufacturers.

1.3.2 Notes concerning planning/installation of this product

Danger
All respective safety measures and accident protection guidelines must be considered carefully and without exception.
2 BL20-BR-24VDC-RED - technical description

2.1 General function description ... 2-2
2.1.1 Usage of BL20-BR-24VDC-RED ... 2-2

2.2 Block diagram (single BL20-BR-24VDC-RED) 2-2

2.3 Technical data .. 2-3

2.4 Wiring diagram .. 2-4

2.5 LED description/ status display ... 2-5

2.6 Parameter data .. 2-5

2.7 Diagnostic data of the module .. 2-5

2.8 Process data of the module ... 2-6
2.8.1 Process output/control interface .. 2-6
2.8.2 Process input data ... 2-6
 – PROFIBUS-DP ... 2-6
 – Modbus TCP .. 2-7
2.1 General function description

The module BL20-BR-24VDC-RED allows the redundant power supply of the BL20-System by redundant feed-in of system voltage U_S and field voltage U_L.

2.1.1 Usage of BL20-BR-24VDC-RED

The usage of the redundant BL20-BR-24VDC-RED modules is only supported by some BL20-gateway types for some fieldbus protocols:

- PROFIBUS-DPV1 (usage and installation guidelines, see chapter 3)
 - BL20-GW-DPV1
- Modbus TCP (usage and installation guidelines, see chapter 3)
 - BL20-GW-EN

2.2 Block diagram (single BL20-BR-24VDC-RED)

Figure 2-1: Block diagram of one single BL20-BR-24VDC-RED

U_S - system voltage (identical to U_{SYS} at the gateway)
U_L - field voltage
V_S - module bus voltage
U_{LD} - redundant field voltage
V_{SD} - redundant module bus voltage
2.3 Technical data

<table>
<thead>
<tr>
<th>Table 2-1: Technical data</th>
<th>Designation</th>
<th>BL20-BR-24VDC-RED</th>
</tr>
</thead>
<tbody>
<tr>
<td>General technical data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System voltage U_S</td>
<td>24 VDC (18 to 30 VDC)</td>
<td></td>
</tr>
<tr>
<td>Redundant module bus voltage V_{SD}</td>
<td>5 VDC</td>
<td></td>
</tr>
<tr>
<td>Module bus current I_{MB}</td>
<td>max. 500 mA</td>
<td></td>
</tr>
<tr>
<td>Field voltage U_L</td>
<td>24 VDC (18 to 30 VDC)</td>
<td></td>
</tr>
<tr>
<td>Field current I_L</td>
<td>max. 5 A</td>
<td></td>
</tr>
<tr>
<td>Power loss P_V</td>
<td>< 1.5 W</td>
<td></td>
</tr>
<tr>
<td>Ambient conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-25 °C to 60 °C</td>
<td></td>
</tr>
<tr>
<td>Storing temperature</td>
<td>-25 °C to 85 °C</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>95 %</td>
<td></td>
</tr>
<tr>
<td>Isolation voltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_L to U_S</td>
<td>500 V$_{rms}$</td>
<td></td>
</tr>
<tr>
<td>U_S to V_{SD}</td>
<td>no isolation</td>
<td></td>
</tr>
<tr>
<td>U_I to U_{LD}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
For all other technical data, please refer to the BL20 manual for I/O-modules (D300717 “BL20 I/O modules - Hardware and Engineering”).
2.4 Wiring diagram

Figure 2-2:
Pin assignment
BL20-BR-
24VDC-RED

![Wiring Diagram](image-url)
2.5 LED description/ status display

Table 2-2: LED-displays

<table>
<thead>
<tr>
<th>LED</th>
<th>Display</th>
<th>Meaning</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIA</td>
<td>Red</td>
<td>Module bus communication failure</td>
<td>Check if more than two adjoining electronics modules have been pulled. Check the power supply to the module bus.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No error message or diagnosis</td>
<td>–</td>
</tr>
<tr>
<td>VSD</td>
<td>Green</td>
<td>Redundant module bus voltage (5 VDC) present</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Redundant module bus voltage (5 VDC) not present</td>
<td>Check the connection to the system voltage supply.</td>
</tr>
<tr>
<td>VS</td>
<td>Green</td>
<td>System voltage (5 VDC) present</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>System voltage (5 VDC) not present</td>
<td>Check the connection to the system voltage supply.</td>
</tr>
<tr>
<td>US</td>
<td>Green</td>
<td>System voltage (24 VDC) present</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>System voltage (24 VDC) not present</td>
<td>Check the connection to the system voltage supply.</td>
</tr>
<tr>
<td>UL</td>
<td>Green</td>
<td>Field voltage (24 VDC) present</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Field voltage (24 VDC) not present</td>
<td>Check the connection to the field voltage supply.</td>
</tr>
<tr>
<td>ULD</td>
<td>Green</td>
<td>Redundant field voltage (24 VDC) present</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Redundant field voltage (24 VDC) not present</td>
<td>Check the connection to the field voltage supply.</td>
</tr>
</tbody>
</table>

2.6 Parameter data

The module has no parameter data.

2.7 Diagnostic data of the module

The module has no diagnostic data, but it provides status information in the process input data (see Process input data (page 2-6)).
2.8 Process data of the module

2.8.1 Process output/control interface

The device has no process output data.

2.8.2 Process input data

The module provides 4 Bit of process input data, which contain the following status information:

<table>
<thead>
<tr>
<th>Table 2-3: Process input bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 3</td>
</tr>
<tr>
<td>DIA U_LD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2-4: Meaning of process input bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
</tr>
<tr>
<td>DIA U_L</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>DIA U_S</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>DIA V_S</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>DIA U_LD</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

PROFIBUS-DP

In PROFIBUS-DP, 1 byte is reserved for the status messages of each BL20-BR-24VDC-RED, whereas only bits 0 to 3 are used as described above.
Modbus TCP

In Modbus TCP, all process data of a station are mapped.

The following example shows a mapping report of a BL20-station with 4 BL20-BR-24VDC-RED (two redundantly supplied potential groups, see also Figure 3-2: Station assembly with BL20-GW-EN and redundant power supply) generated using the software tool I/O-ASSISTANT (FDT/DTM).

Figure 2-3: Modbus report, mapping of process input bits

1. Station description

<table>
<thead>
<tr>
<th>Station address</th>
<th>TAG</th>
<th>Data Size In</th>
<th>Data Size Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^</td>
<td></td>
<td>16 bit</td>
<td>0 bit</td>
</tr>
<tr>
<td>1^</td>
<td>BL20-BR-24VDC-RED</td>
<td>4 bit</td>
<td>0 bit</td>
</tr>
<tr>
<td>2^</td>
<td>BL20-BR-24VDC-RED</td>
<td>4 bit</td>
<td>0 bit</td>
</tr>
<tr>
<td>3^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>4^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>5^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>6^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>7^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>8^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>9^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>10^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>11^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>12^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>13^</td>
<td>BL20-24VDC-RED</td>
<td>32 bit</td>
<td>32 bit</td>
</tr>
</tbody>
</table>

1.2. I/O map for input data

Process input data: 17 Words

* For detailed information about status/control word see online help.
3 BL20-BR-24VDC-RED - installation

3.1 Redundant power supply of a BL20-station

3.1.1 Applicable gateways

3.1.2 Redundant power feed directly next to the gateway
 - Gateway supply
 - Base modules to be used next to the gateway

3.1.3 Redundant power supply of different potential groups
 - Base modules to be used for redundant supply of potential groups

3.1.4 Digital output modules in redundantly supplied stations
3.1 Redundant power supply of a BL20-station

The redundant power supply of a BL20-station is realized using two modules BL20-BR-24VDC-RED which are placed directly to the right of the gateway.

It is also possible to insert two redundant power supply modules within a station in order to redundantly supply further potential groups if required.

3.1.1 Applicable gateways

The BL20-BR-24VDC-RED for redundant power supply can be used with:

- BL20-GW-DPV1
- BL20-GW-EN
3.1.2 Redundant power feed directly next to the gateway

Gateway supply

The voltage feed-in of U_e at the first BL20-BR-24VDC-RED next led through to the gateway. Electrical bridges at the gateway between U_e and U_{sys} as well as between GND, and GND SYS are used to supply the gateway electronics using U_e connected to the first BL20-BR-24VDC-RED.

Note

Please observe the following:

$$U_{sys} \text{ (gateway)} = U_e \text{ (BL20-BR-24VDC-RED)} = \text{system voltage}$$

Attention

U_e and U_{sys} are **not** galvanically isolated in the **first** potential group with redundant BL20-BR-24VDC-RED (see Figure 3-3: Redundant power supply of potential groups).

In **further** potential groups with redundant BL20-BR-24VDC-RED, U_e and U_{sys} (U_{SY}) are galvanically isolated.

Figure 3-1:
Station assembly with BL20-GW-DPV1 and redundant power supply

A bridge between U_e/U_{sys} and GND/GND SYS to supply the gateway

B: slot x,y

$x = \text{position}$

$y = \text{potential group}$
Base modules to be used next to the gateway

For the first BL20-BR-24VDC-RED next to the gateway (slot 1), one of the following base modules has to be used:

- BL20-P4T-SBBC-G (tension clamp connection)
- BL20-P4S-SBBC-G (screw connection)

For the second BL20-BR-24VDC-RED (slot 2) next to the gateway, one of the following base modules can be used:

- BL20-S4T-SBBC (tension clamp connection)
- BL20-S4S-SBBC (screw connection)
3.1.3 Redundant power supply of different potential groups

Base modules to be used for redundant supply of potential groups

<table>
<thead>
<tr>
<th>Potential group 1</th>
<th>Potential group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 1.1</td>
<td>Slot 2.1</td>
</tr>
<tr>
<td>BL20-P4x-SBBC-G</td>
<td>BL20-S4x-SBBC</td>
</tr>
<tr>
<td>24 VDC</td>
<td>24 VDC</td>
</tr>
<tr>
<td>Slot 1.2</td>
<td>Slot 2.2</td>
</tr>
<tr>
<td>BL20-P4x-SBBC-B</td>
<td>BL20-S4x-SBBC</td>
</tr>
<tr>
<td>24 VDC</td>
<td>24 VDC</td>
</tr>
</tbody>
</table>

Figure 3-3: Redundant power supply of potential groups

For the **first** BL20-BR-24VDC-RED in a potential group (group \(n > 1 \), slot 1), one of the following base modules has to be used:

- BL20-P4T-SBBC-B (Tension clamp connection)
- BL20-P4S-SBBC-B (Screw connection)

For the **second** BL20-BR-24VDC-RED in a potential group (group \(n > 1 \), slot 2), one of the following base modules can be used:

- BL20-S4T-SBBC (Tension clamp connection)
- BL20-S4S-SBBC (Screw connection)
3.1.4 Digital output modules in redundantly supplied stations

Attention

U_L and $U_S (U_{SYS})$ are not galvanically isolated in the first potential group with redundant BL20-BR-24VDC-RED (see Figure 3-3: Redundant power supply of potential groups).

In further potential groups with redundant BL20-BR-24VDC-RED, U_L and $U_S (U_{SYS})$ are galvanically isolated.

In order to support safe disconnection of digital output signals, digital output modules should be placed within a redundantly supplied potential group with galvanic isolation of U_L and $U_S (U_{SYS})$. An usage within the first potential group following the gateway is not reasonable.
4 Configuring of redundantly supplied stations with the I/O-ASSISTANT Quick Start

4.1 Starting the TURCK I/O-ASSISTANT Quick Start ... 4-2

4.2 Configuring the BL20-station in the Quick Start ... 4-3
4.1 Starting the TURCK I/O-ASSISTANT Quick Start

1. Open PACTware™
2. Start the Quick Start using the "Project → TURCK I/O-ASSISTANT Quick Start"-command.
4.2 Configuring the BL20-station in the Quick Start

1 Select the option "configure the system manually" and confirm the selection with "Next".

Figure 4-2: Starting the Quick Start
2 Select the fieldbus interface and the protection class and confirm the selection with "Finish".

Note
Please observe, that the redundant power supply is only possible with the gateways defined in chapter 3, page 3-2.
3. The dialog box "COM1 Busaddress management" shows a selection of gateways for the chosen fieldbus protocol.

4. Select the gateway to be used and confirm with "OK".

Figure 4-4: Selecting the gateway
In the new window "Gateway Quick Start" activate the redundant power supply of the station by selecting the respective check box.

Select the used connection type (spring or screw) and define the number and the type of the required I/O-channels.

If no base module is defined automatically, select one of the provided base modules for the respective electronics module.

The station is automatically checked.

Confirm your station configuration with "OK".

The station is automatically configured.
11 All needed supply modules are automatically configured, wherever one Bus Refreshing module is configured, the second one for the redundant supply is set automatically as well.

Figure 4-6: I/O-configuration with redundant Bus Refreshing modules
Configuring of redundantly supplied stations with the I/O-ASSISTANT Quick Start